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1 electrostatic waves in cold magnetized plasmas

• Why cold? Initial interest was for ionospheric science

• Consider both, electron and ion motion

• Equations:

– Poisson equation

– Continuity equation

– 3-D momentum equation with p = 0 (cold ionosphere) and B0 , 0

• Geometry: Wave might have k||B, k⊥B, or in-between

Without loss of generality we chose B and k such that

B = [0,0,Bz]

k = [kx,0,kz].

We consider electrostatic waves, which implies that k||E, and consequently

E(x, t) = [Ex,0,Ez]ei(kxx+kzz−ωt).

We note further that

E =−∇φ= [−ikxφ,0,−ikzφ]
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and

∇ ·E =−∇
2φ= k2

xφ+ k2
zφ.

The Poisson equation gives

∇
2φ=− ρ

ε0
=− 1

ε0
∑

s=i,e
δnsqs,

the continuity equation reads

∂ns

∂t
+∇ · (nsus) = 0

−iωδns +n0i(kxux + kzuz) = 0,

and the momentum equation writes as

ms��ns

∂us

∂t
+(us ·∇)us︸       ︷︷       ︸

O(u2
s )∼0

= −∇p︸ ︷︷ ︸
T=0→0

+��nsqsE+��nsqsus×B.

We first solve the x̂ component of the momentum equation to find ux,s as function of
uy,s:

−iωmsux,s = qsEx +qsuy,sBz,

then solve then the ŷ component to obtain a second relation for these velocities

−iωmsuy,s =−qsux,sBz

uy,s =−
iqsux,sBz

ωms
=−i

ωc,s

ω
ux,s,

and subsititute uy,s into the x̂ component

−iωmsux,s = qsEx + qsBz︸︷︷︸
msωccs

uy,s

∣∣∣∣← uy,s

= qsEx− i
ms

ω
ω2

c,sux,s

−iω2ux,s =
qs

ms
Exω− iω2

c,sux,s

ux,s = i
qs

ms
Ex

(
ω

ω2−ω2
c,s

)
.
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Finally, we obtain the relation for uz,s from the ẑ component:

−iωmsuz,s = qsEz

uz,s = i
qs

ms
Ez

1
ω
.

We now put velocities into the continuity equation and yield

0 =−iωδns + in0

(
i
qs

ms
kxEx

ω

ω2−ω2
c,s

+ i
qs

ms
kzEz

1
ω

)
.

We use that E =−∇φ, implying that Ex =−ikxφ and Ez =−ikzφ. After rearranging
the equation above we get an expression for δns

δns = n0
qs

ms

[
k2

x

ω2−ω2
c,s

+
k2

z

ω2

]
δφ,

which we put into the Poisson equation

(k2
x + k2

z )δφ=
1
ε0

∑
s=i,e

δnsqs

= δφ ∑
s=i,e

(
n0q2

s

ε0ms

)
︸      ︷︷      ︸

ωp,s

[
k2

x

ω2−ω2
c,s

+
k2

z

ω2

] ∣∣∣∣ · ω2

k2 ,

and after rearranging the equation for ω we get

ω2 = ∑
s=i,e

ω2
p,s

k2

k2
z +

k2
x

1− ω2
c,s
ω2

 (1)

The resulting dispersion relation for electrostatic waves propagating in a cold plasma
is rather complicated, but very useful, albeit only in simplified limits.

1.1 Dispersion relation for B→ 0

This case implies that ωc,s→ 0, which recovers the plasma oscillation case

ω2 = ω2
pe +ω

2
pi. (2)

1.2 Dispersion relation for k‖B

In this case there is no δu×Bz force acting on the plasma particles. Thus, this scenario
is similar to the previous one and we get again
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ω2 = ω2
pe +ω

2
pi. (3)

1.3 Strongly magnetized plasma

Strongly magnetized means that B→ ∞, and therefore is ωc,s� ω,

k2
x

1− ω2
c,s
ω2

∼ O
(
ω

ωc,s

)2

≈ 0,

and the dispersion relation becomes

ω2 = (ω2
pe +ω

2
pi)

k2
z

k2 .

After replacing k2
z

k2 by cosθ, where θ is the angle between B and k, the dispersion
relation for a strongly magnetized plasma writes as

ω2 = (ω2
pe +ω

2
pi)cosθ. (4)

4


	Electrostatic waves in cold magnetized plasmas
	Dispersion relation for B 0
	Dispersion relation for k "026B30D  B
	Strongly magnetized plasma


